
COP 3330: Arrays & Strings in Java Page 1 © Mark Llewellyn

COP 3330: Object-Oriented Programming
Summer 2007

Arrays and Strings in Java – Part 2

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
HEC 236, 823-2790

http://www.cs.ucf.edu/courses/cop3330/sum2007

COP 3330: Arrays & Strings in Java Page 2 © Mark Llewellyn

In the next few slides we’ll develop a class that will contain a
number of class methods to allow us to manipulate one-
dimensional arrays.

public class ArrayTools {
//class constant
private static final int MAX_LIST_SIZE = 100;

//putList(): produces a string representation
public static void putList(int[] data) {

for (int i = 0; i < data.length; ++i){
System.out.println(data[i]);

}
}

The ArrayTools Class

COP 3330: Arrays & Strings in Java Page 3 © Mark Llewellyn

//getList(): extract up to MAX_LIST_SIZE values
public static int[] getList() throws IOException {

BufferedReader stdin = new BufferedReader(
new InputStreamReader(System.in));

int[] buffer = new int[MAX_LIST_SIZE];
int listSize = 0;
for (int i = 0l i < MAX_LIST_SIZE; ++i){

String currentInput = stdin.readLine();
if (currentInput != null) {

int number = Integer.parseInt(currentInput);
buffer[i] = number;
++listSize;

}
else {

break;
}

}
int[] data = new int[listSize];
for(int i =0; i < listSize; ++i) {

data[i] = buffer[i];
}
return data;

}

COP 3330: Arrays & Strings in Java Page 4 © Mark Llewellyn

//reverse(): reverse the order of the element values
public static void reverse(int[] list){

int n = list.length;
for (int i = 0; i < n/2; ++i){

//swap the element from the front of the list with the
//corresponding element from the end of the list
int remember = list[i];
list[i] = list[n-1-i];
list[n-1-i] = remember;

}
}

//doubleCapacity(): creates a duplicate list twice as big
public static String[] doubleCapacity(String[] curList) {

int n = curList.length;
String[] biggerList = new String[2*n];
for (int i = 0; i < n; ++i) {

biggerList[i] = curList[i];
}
return biggerList;

}
}//end class ArrayTools

COP 3330: Arrays & Strings in Java Page 5 © Mark Llewellyn

Example Using the ArrayTools Class
//extract and display a list in forward and reverse order
import java.io.*;
public class Demo{

public static void main(String[] args) throws IOException {
System.out.println();
System.out.println(“Enter a list of integers, one per line”);
int[] number = ArrayTools.getList();
System.out.println();
System.out.println(“Your list”);
ArrayTools.putList(number);
ArrayTools.reverse(number);
System.out.println();
System.out.println(“Your list in reverse order:”);
ArrayTools.putList(number);
System.out.println();

}
}

COP 3330: Arrays & Strings in Java Page 6 © Mark Llewellyn

Example – Doubling the Size of the Array

• Suppose that we declare the following array:

String[] bikes = {“Colnago”, “Bianchi”, “Eddy Merckx”,
“Gios”};

• There is no room to add another bike to this array. Each
element of the array already references a value. The method
doubleCapacity() will allow us to expand our array.

0 1 2 3

Colnago Bianchi Eddy Merckx Gios

initial configuration

COP 3330: Arrays & Strings in Java Page 7 © Mark Llewellyn

Example – Doubling the Size of the Array
(cont.)

bikes = doubleCapacity(bikes);

bikes[4] = “Pinarello”;

• The invocation and statements above causes the following to
occur:

0 1 2 3

Colnago

Bianchi

Eddy Merckx Gios

final configuration – after doubling capacity

4 5 6 7

null null null

Pinarello

COP 3330: Arrays & Strings in Java Page 8 © Mark Llewellyn

Command-Line Parameters
• Many OS (e.g. Linux and Windows) provide command-

line interpreters. These interpreters allow the user to type a
command and then have the OS execute it.

• For example: % cd \jdk\bin

• The instruction above the string \jdk\bin is a
command-line parameter to the command cd.

• The Java application on the next page simply echoes its
command-line parameters to the standard output. Its
operation is identical to that of the Linux/Windows
commands echo.

COP 3330: Arrays & Strings in Java Page 9 © Mark Llewellyn

Command-Line Parameters (cont.)
//mimics OS command echo
public class Echo {

public static void main (String[] args){
//display parameters one after the other
for (int i = 0; i < args.length; ++i) {

System.out.println(args[i] + “ “);
}
System.out.println();

} //end main
} //end Echo

Invocation: java Echo Kristi Debi Jennifer

Output: Kristi
Debi
Jennifer

COP 3330: Arrays & Strings in Java Page 10 © Mark Llewellyn

Command-Line Parameters (cont.)
Invocation: java Echo Kristi Debi Jennifer

Output: Kristi
Debi
Jennifer

0 1 2

Kristi Debi Jennifer

Command line parameters
are passed to method main()

References to the strings
that compose the

command line

COP 3330: Arrays & Strings in Java Page 11 © Mark Llewellyn

Multidimensional Arrays
• Thus far, all of the arrays that we have examined have

been one-dimensional arrays. It is also possible to define
multidimensional arrays in Java (as well as other
languages).

• There are many different application areas, such as
matrices, graphical animation, economic forecast models,
map representations, and microprocessor design, just to
mention a few, where multidimensional arrays are
extremely useful.

• Arrays of any dimension are possible in Java. Two and
three dimensional arrays are quite common. Arrays with
more than three dimensions are not commonly used, but
are necessary for some types of problems.

COP 3330: Arrays & Strings in Java Page 12 © Mark Llewellyn

Multidimensional Arrays (cont.)

• Let’s look at 2-dimensional arrays for the time being
before we look at more complex arrays.

• The following definition initializes m to reference a 2-
dimensional array:

int[][] m = new int[3][4];

– The 2-dimensional array m should be viewed as consisting of three
component arrays: m[0], m[1], and m[2].

– The component type of m is int[] and the element type of each
of m[0], m[1], and m[2] is int.

COP 3330: Arrays & Strings in Java Page 13 © Mark Llewellyn

Multidimensional Arrays (cont.)

• The definition for m

int[][] m = new int[3][4];

is shorthand for the following explicit definition:
int[][] m = new int[3][4];

m[0] = new int[4];

m[1] = new int[4];

m[2] = new int[4];

• The components of a 2-dimensional array are known as rows. To refer
to an individual element of a row, an additional subscript is required.
For example, m[i][j] refers to the jth element of the ith row in
m.

COP 3330: Arrays & Strings in Java Page 14 © Mark Llewellyn

Multidimensional Arrays (cont.)

• The definition for m gives the array the following
representation:

0 1 2
m

m[0][0]
0 0 0 0

m[0][1] m[0][2] m[0][3]

m[2][0]
0 0 0 0

m[2][1] m[2][2] m[2][3]

m[1][0]
0 0 0 0

m[1][1] m[1][2] m[1][3]

COP 3330: Arrays & Strings in Java Page 15 © Mark Llewellyn

Multidimensional Arrays (cont.)

• Suppose that you want to set the values of a two-dimensional
array m using the standard input. The easiest way to do this is to
nest two for loops where the outer loop would iterate once per
subarray. For each such iteration, the inner loop would iterate
once for each element of the current subarray. This code is
shown below:

for (int row = 0; r < m.length; ++row) {

for(int column = 0; column < m[row].length; ++column) {
System.out.println(“Enter an int value: “);
m[row][column] = Integer.parseInt(Stdin.readLine());

}
}

COP 3330: Arrays & Strings in Java Page 16 © Mark Llewellyn

Multidimensional Arrays (cont.)
• Java does not require that the subarrays of a 2-dimensional

array have the same length.

• Consider the following example:
String[][] s = new String[4][];

s[0] = new String[2];

s[1] = new String[2];

s[2] = new String[4];

s[3] = new String[3];

• The representation of this array is shown in the next slide.

COP 3330: Arrays & Strings in Java Page 17 © Mark Llewellyn

Multidimensional Arrays (cont.)

0 1 2
s

s[0][0]
null null

s[0][1]

s[3][0]
null null null

s[3][1] s[3][2]

s[1][0]
null null

s[1][1]

3

s[2][0]
null null null

s[2][1] s[2][2]
null

s[2][2]

COP 3330: Arrays & Strings in Java Page 18 © Mark Llewellyn

Multidimensional Arrays (cont.)
• The definition of multidimensional arrays can include

initialization by specifying a block of values with each
component of the array having its own initialization
specification.

• For example, the following definitions initialize both b and c to
be int[][] arrays.

int[][] b = {{1,2,3}, {4,5,6}, {7,8,9}};

int[][] c = {{1,2}, {3,4}, {5,6}, {7,8,9}};

• The representation of these two arrays is shown in the next
slide.

COP 3330: Arrays & Strings in Java Page 19 © Mark Llewellyn

Multidimensional Arrays (cont.)

b[1][0]
4 5

b[1][1]

0 1 2
b

b[0][0]
1 2

b[0][1]

b[2][0]
7 8 9

b[2][1] b[2][2]

6
b[1][2]

3
s[0][1]0 1 2

c

c[0][0]
1 2

c[0][1]

c[3][0]
7 8 9

c[3][1] c[3][2]

c[1][0]
3 4

c[1][1]

3

c[2][0]
5 6

c[2][1]

COP 3330: Arrays & Strings in Java Page 20 © Mark Llewellyn

Multidimensional Arrays (cont.)
• Methods with parameters that are multidimensional arrays are

permitted in Java.

• The following method zero() sets to 0 all the elements of the
subarrays of its two-dimensional int[][] parameter array
inarray.

public void zero (int[][] inarray){

for(int row = 0; row < inarray.length; ++row){
for(int column = 0; column < inarray[row].length; ++column)

inarray[row][column] = 0;

}

COP 3330: Arrays & Strings in Java Page 21 © Mark Llewellyn

Multidimensional Arrays (cont.)
• The following example illustrates a 3-dimensional array.

int[][][] d = new int[3][3][2];

0 1 2
d

d[2][0] d[2][1] d[2][2]

d[1][0] d[1][1] d[1][2]

d[0][0] d[0][1] d[0][1]

0
d[2][0][0]

0
d[2][0][1]

0
d[2][1][0]

0
d[2][1][1]

0
d[2][2][0]

0
d[2][2][1]

0
d[1][0][0]

0
d[1][0][1]

0
d[1][1][0]

0
d[1][1][1]

0
d[1][2][0]

0
d[1][2][1]

0
d[0][0][0]

0
d[0][0][1]

0
d[0][1][0]

0
d[0][1][1]

0
d[0][2][0]

0
d[0][2][1]

COP 3330: Arrays & Strings in Java Page 22 © Mark Llewellyn

Sorting
• Sorting is a common application which utilizes arrays to

hold the list of elements which are to be sorted.

• A sort is often (not always) an iterative process such that
during each iteration the elements in the list are rearranged
in some manner. Each iterative step is designed to bring
the list of elements closer to its final sorted order.

• Many different sort techniques are available and there are
advantages and disadvantages associated with most sorting
algorithms. We will consider only a couple of basic
sorting algorithms which are suitable for sorting relatively
small lists of elements.

COP 3330: Arrays & Strings in Java Page 23 © Mark Llewellyn

The Selection Sort
• The Selection sort is a simple, comparison-based sorting

algorithm with complexity O(n2).

• The technique of the Selection sort is that on the first
iteration through the elements of the list to be sorted the
smallest (or largest) element is found and placed in the first
(or last) position of the list. This is done by interchanging
the smallest element with the element in the first position
of the list.

– Thus, the general technique of the Selection sort is such that on the
ith iteration through the elements in the list to be sorted, the ith
smallest (or largest) element is placed into the ith position in the
list.

COP 3330: Arrays & Strings in Java Page 24 © Mark Llewellyn

Example of Selection Sort

0
6 9 82 69 16 54 90 44 2 87 74

1 2 3 4 5 6 7 8 9 10
A

smallest element
in the list

0
2 9 82 69 16 54 90 44 6 87 74

1 2 3 4 5 6 7 8 9 10
A

put the smallest element in
the list in the first position

of the list

interchange these two elements

First iteration in the list

COP 3330: Arrays & Strings in Java Page 25 © Mark Llewellyn

0
2 9 82 69 16 54 90 44 6 87 74

1 2 3 4 5 6 7 8 9 10
A

smallest remaining
element in the list

0
2 6 82 69 16 54 90 44 9 87 74

1 2 3 4 5 6 7 8 9 10
A

put the second smallest
element in the list in the

second position of the list

interchange these two elements

Second iteration in the list

Selection Sort Example

COP 3330: Arrays & Strings in Java Page 26 © Mark Llewellyn

0
2 6 82 69 16 54 90 44 9 87 74

1 2 3 4 5 6 7 8 9 10
A

smallest remaining
element in the list

0
2 6 9 69 16 54 90 44 82 87 74

1 2 3 4 5 6 7 8 9 10
A

put the third smallest
element in the list in the
third position of the list

interchange these two elements

Third iteration in the list

Selection Sort Example

COP 3330: Arrays & Strings in Java Page 27 © Mark Llewellyn

0
2 6 9 69 16 54 90 44 82 87 74

1 2 3 4 5 6 7 8 9 10
A

smallest remaining
element in the list

0
2 6 9 16 69 54 90 44 82 87 74

1 2 3 4 5 6 7 8 9 10
A

put the fourth smallest
element in the list in the
fourth position of the list

interchange these two elements

Fourth iteration in the list

Selection Sort Example

COP 3330: Arrays & Strings in Java Page 28 © Mark Llewellyn

0
2 6 9 16 69 54 90 44 82 87 74

1 2 3 4 5 6 7 8 9 10
A

smallest remaining
element in the list

0
2 6 9 16 44 54 90 69 82 87 74

1 2 3 4 5 6 7 8 9 10
A

put the fifth smallest
element in the list in the
fifth position of the list

interchange these two elements

Fifth iteration in the list

Selection Sort Example

COP 3330: Arrays & Strings in Java Page 29 © Mark Llewellyn

0
2 6 9 16 44 54 90 69 82 87 74

1 2 3 4 5 6 7 8 9 10
A

smallest remaining
element in the list

0
2 6 9 16 44 54 90 69 82 87 74

1 2 3 4 5 6 7 8 9 10
A

put the sixth smallest
element in the list in the
sixth position of the list

no interchange required

Sixth iteration in the list

Selection Sort Example

COP 3330: Arrays & Strings in Java Page 30 © Mark Llewellyn

0
2 6 9 16 44 54 90 69 82 87 74

1 2 3 4 5 6 7 8 9 10
A

smallest remaining
element in the list

0
2 6 9 16 44 54 69 90 82 87 74

1 2 3 4 5 6 7 8 9 10
A

put the seventh smallest
element in the list in the

seventh position of the list

interchange these two elements

Seventh iteration in the list

Selection Sort Example

COP 3330: Arrays & Strings in Java Page 31 © Mark Llewellyn

0
2 6 9 16 44 54 69 90 82 87 74

1 2 3 4 5 6 7 8 9 10
A

smallest remaining
element in the list

0
2 6 9 16 44 54 69 74 82 87 90

1 2 3 4 5 6 7 8 9 10
A

put the eighth smallest
element in the list in the
eighth position of the list

interchange these two elements

Eighth iteration in the list

Selection Sort Example

COP 3330: Arrays & Strings in Java Page 32 © Mark Llewellyn

0
2 6 9 16 44 54 69 74 82 87 90

1 2 3 4 5 6 7 8 9 10
A

smallest remaining
element in the list

0
2 6 9 16 44 54 69 74 82 87 90

1 2 3 4 5 6 7 8 9 10
A

put the ninth smallest
element in the list in the
ninth position of the list

no interchange required

Ninth iteration in the list
Selection Sort Example

COP 3330: Arrays & Strings in Java Page 33 © Mark Llewellyn

0
2 6 9 16 44 54 69 74 82 87 90

1 2 3 4 5 6 7 8 9 10
A

smallest remaining
element in the list

0
2 6 9 16 44 54 69 74 82 87 90

1 2 3 4 5 6 7 8 9 10
A

put the tenth smallest
element in the list in the
tenth position of the list

Iterations end – last element is largest element in list and is in the last position

Tenth and final
iteration in the list

Selection Sort Example

COP 3330: Arrays & Strings in Java Page 34 © Mark Llewellyn

The Selection Sort
//selectionSort(): performs a selection sort on the
//elements of array a.
public static void selectionSort(int[] a){

for(int i = 0; i < a.length-1; ++i){
int smallest = i;
for(int j = i+1; j< a.length; ++j) {

//find the smallest remaining element
if(a[j] < a[smallest]) {

smallest = j;
}

}end inner loop on j
//found the smallest remaining element
int remember = a[i];
a[i] = a[smallest];
a[smallest] = remember;

}//end outer loop on i
}

COP 3330: Arrays & Strings in Java Page 35 © Mark Llewellyn

Example of Insertion Sort

0
6 4 82 69 16 54 90 44 2 87 74

1 2 3 4 5 6 7 8 9 10
A

0
4 6 82 69 16 54 90 44 2 87 74

1 2 3 4 5 6 7 8 9 10
A

the first element in the list
is sorted by default

First iteration in the list

Second iteration in the list

“Expand” window to consider the second element of the
list. They are not in the correct order, so interchange
them. Now the first two elements are sorted.

COP 3330: Arrays & Strings in Java Page 36 © Mark Llewellyn

0
4 6 82 69 16 54 90 44 2 87 74

1 2 3 4 5 6 7 8 9 10
A

“Expand” the window to include the third element. The
new element is in its proper position with respect to the
first three. Now the first three elements are sorted.

Third iteration in the list

Fourth iteration in the list

“Expand” window to consider the fourth element of the list. It is not in its
proper position relative to the first four elements, so put it in its proper
position (interchange 69 and 82). Now the first four elements are sorted.

0
4 6 69 82 16 54 90 44 2 87 74

1 2 3 4 5 6 7 8 9 10
A

Insertion Sort Example

COP 3330: Arrays & Strings in Java Page 37 © Mark Llewellyn

Fifth iteration in the list

Sixth iteration in the list

“Expand” window to consider the sixth element of the list. It is not in its
proper position relative to the first six elements, so put it in its proper
position (insert 54 at index 3 and shift 69 and 82). Now the first six
elements are sorted.

0
4 6 16 54 69 82 90 44 2 87 74

1 2 3 4 5 6 7 8 9 10
A

“Expand” the window to include the fifth element. The new element is
not in its proper position relative to the first five elements, so put it in its
proper position (insert 16 at index 2 and shift 69 and 82 right). Now the
first five elements are sorted.

0
4 6 16 69 82 54 90 44 2 87 74

1 2 3 4 5 6 7 8 9 10
A

Insertion Sort Example

COP 3330: Arrays & Strings in Java Page 38 © Mark Llewellyn

Seventh iteration in the list

Eighth iteration in the list

“Expand” window to consider the eighth element of the list. It is not in its
proper position relative to the first eight elements, so put it in its proper
position (insert 44 at index 3 and shift 54, 69, 82, and 90). Now the first
eight elements are sorted.

0
4 6 16 44 54 69 82 90 2 87 74

1 2 3 4 5 6 7 8 9 10
A

“Expand” the window to include the seventh element. The new element
is in its proper position relative to the first seven elements, so no
repositioning is required. Now the first seven elements are sorted.

0
4 6 16 54 69 82 90 44 2 87 74

1 2 3 4 5 6 7 8 9 10
A

Insertion Sort Example

COP 3330: Arrays & Strings in Java Page 39 © Mark Llewellyn

Ninth iteration in the list

Tenth iteration in the list

“Expand” window to consider the tenth element of the list. It is not in its
proper position relative to the first ten elements, so put it in its proper
position (insert 87 at index 8 and shift 90 to the right). Now the first ten
elements are sorted.

0
2 4 6 16 44 54 69 82 90 87 74

1 2 3 4 5 6 7 8 9 10
A

“Expand” the window to include the ninth element. The new element is
not in its proper position relative to the first nine elements, so put it in
its proper position (insert 2 at index 0 and shift 4, 6, 16, 44, 54, 69, 82,
and 90 to the right). Now the first nine elements are sorted.

0
2 4 6 16 44 54 69 82 90 87 74

1 2 3 4 5 6 7 8 9 10
A

Insertion Sort Example

COP 3330: Arrays & Strings in Java Page 40 © Mark Llewellyn

Eleventh and final iteration in the list

“Expand” window to consider the eleventh element of the list. It is not in
its proper position relative to the first eleven elements, so put it in its
proper position (insert 74 at index 7 and shift 82, 87, and 90 to the right).
Now the entire list is sorted.

0
2 4 6 16 44 54 69 74 82 87 90

1 2 3 4 5 6 7 8 9 10
A

Insertion Sort Example

COP 3330: Arrays & Strings in Java Page 41 © Mark Llewellyn

Insertion Sort
• The approach of Insertion Sort:

– Pick any item and insert it into its proper place in a sorted
sublist

– repeat until all items have been inserted

• In more detail:
– consider the first item to be a sorted sublist (of one item)
– insert the second item into the sorted sublist, shifting items

as necessary to make room to insert the new addition
– insert the third item into the sorted sublist (of two items),

shifting as necessary
– repeat until all values are inserted into their proper position

COP 3330: Arrays & Strings in Java Page 42 © Mark Llewellyn

Sorting Objects

• Integers have an inherent order, but the order of a
set of objects must be defined by the person
defining the class

• Recall that a Java interface can be used as a type
name and guarantees that a particular class has
implemented particular methods

• We can use the Comparable interface to
develop a generic sort for a set of objects

COP 3330: Arrays & Strings in Java Page 43 © Mark Llewellyn

Arrays of -Varying Length

• The size of each row of a two-dimensional array
can be different;
int[][] x;

x = new int[5][];
x[0] = new int[1];
x[1] = new int[2];
x[2] = new int[3];
x[3] = new int[4];
x[4] = new int[5];

x.length 5
x[0].length 1
x[1].length 2

? x[1] = new int[10];

x

COP 3330: Arrays & Strings in Java Page 44 © Mark Llewellyn

public class ArrayOfArraysDemo2 {
public static void main(String[] args) {

int[][] aMatrix = new int[4][];
//populate matrix
for (int i = 0; i < aMatrix.length; i++) {

aMatrix[i] = new int[5]; //create sub-array
for (int j = 0; j < aMatrix[i].length; j++) {

aMatrix[i][j] = i + j;
}

}
//print matrix
for (int i = 0; i < aMatrix.length; i++) {

for (int j = 0; j < aMatrix[i].length; j++) {
System.out.print(aMatrix[i][j] + " ");

}
System.out.println();

}
}

}

COP 3330: Arrays & Strings in Java Page 45 © Mark Llewellyn

String and char Arrays in Java

• Strings in Java are not char arrays (in C and C++
strings are char arrays).

• But, we can convert a char array into a string or
a string into a char array.
– char array into string:

char[] name = {‘m’,’a’,’r’,’k’};
String aname = new String(name};

– string into char array:
String aname = “mary”;
char[] name = aname.toCharArray();

COP 3330: Arrays & Strings in Java Page 46 © Mark Llewellyn

toString() method
• Recall that the toString() method of a class allows the

string representation of its instances.
public class ComplexNum {
private double realpart, imaginarypart;
public ComplexNum(double r, double i) {

realpart=r; imaginarypart=i;
}
public String toString() {
return(realpart+”+”+imaginarypart+”i”);
} }

ComplexNum cn1 = new ComplexNum(1.0,2.0);
System.out.println(“The complex number: “ + cn1);

“a”+cn1 is equivalent to “a”+cn1.toString()

COP 3330: Arrays & Strings in Java Page 47 © Mark Llewellyn

Copy from standard input to standard output

import java.io.*;

public class CopyString {
public static void main(String[] args) {
try {
BufferedReader stdin =

new BufferedReader(new
InputStreamReader(System.in));

String aline;
while ((aline=stdin.readLine()) != null)
System.out.println("your line: " + aline);

} catch(IOException e) {}
}

}

COP 3330: Arrays & Strings in Java Page 48 © Mark Llewellyn

Copy from a file to another file
import java.io.*;
public class CopyFile {
public static void main(String[] args) {

try {
BufferedReader stdin =
new BufferedReader(new InputStreamReader(System.in));

System.out.println("Input File Name: ");
String infname = stdin.readLine();
System.out.println("Output File Name: ");
String outfname = stdin.readLine();
BufferedReader infile = new BufferedReader(new
FileReader(infname));

PrintWriter outfile =
new PrintWriter(new BufferedWriter(new
FileWriter(outfname)));

String aline;
while ((aline=infile.readLine()) != null)

outfile.println(aline);
outfile.flush(); outfile.close();

} catch(IOException e) {}
}}

COP 3330: Arrays & Strings in Java Page 49 © Mark Llewellyn

StringTokenizer Class
import java.io.*;
import java.util.*;
public class Words {
public static void main(String[] args) {

try {
BufferedReader stdin =
new BufferedReader(new InputStreamReader(System.in));

String aline;
//String delim=",. ";
while ((aline=stdin.readLine()) != null) {

StringTokenizer st = new StringTokenizer(aline);
//StringTokenizer st = new StringTokenizer(aline,delim);
while (st.hasMoreTokens())
System.out.println(st.nextToken());

}
} catch(IOException e) {}

} }

COP 3330: Arrays & Strings in Java Page 50 © Mark Llewellyn

Output of Words Application

without delimeters

COP 3330: Arrays & Strings in Java Page 51 © Mark Llewellyn

Output of Words Application

with delimeters , and .

COP 3330: Arrays & Strings in Java Page 52 © Mark Llewellyn

Collections Framework

• Although arrays in Java are more robust than arrays in
other programming languages they suffer from the
traditional shortcoming - they cannot be resized; that is,
there are no Java array operations that support the insertion
of new elements or the deletion of existing elements.

• For software projects being developed in other languages,
the restrictions on arrays often force developers to use
nonportable alternative list representations.

– The cost of using nonportable representations can be quite high
because developers must create and support multiple versions of
their software.

COP 3330: Arrays & Strings in Java Page 53 © Mark Llewellyn

Collections Framework (cont.)

• Through its collections framework, Java has a large set of
list representations.
– With this framework, Java software developers typically can avoid

the expense of developing new list representations.

– In addition, because the framework provides an extensive
collection of algorithms for examining and manipulating its list
representations, software developers can rely on the correctness of
these data structures and concentrate their resources on the
problem-specific aspects of their projects.

• There are two types of list representations in the
collections framework – those that implement the interface
java.util.Collection and those that implement
the interface java.util.Map.

COP 3330: Arrays & Strings in Java Page 54 © Mark Llewellyn

Collections Framework (cont.)

Collection Map

List Set

SortedSet

HashMap

The two interface hierarchies in the Collections network

COP 3330: Arrays & Strings in Java Page 55 © Mark Llewellyn

Collections Framework (cont.)

• Classes that implement one of the derived Collection
interfaces List, Set, and SortedSet represent lists
as we normally imagine them. Such classes support a
view of a list as a group of elements.

• Classes that implement the Map interface or its derived
interface HashMap take a more associative view; that is,
these classes provide the means to associate “keys” with
values. The Map-based classes also provide the means to
determine the value associated with a key and vice versa.

COP 3330: Arrays & Strings in Java Page 56 © Mark Llewellyn

ArrayList Class
• We’ll focus on the ArrayList class which provides a

resizeable list representation that implements the List
interface.
– The name ArrayList is intended to be doubly suggestive. An
ArrayList uses an array to represent the elements of its list. In
addition, an ArrayList has been designed so that its element
accessor and mutator methods are guaranteed to be very efficient,
i.e., O(1).

– Associated with each ArrayList is a capacity, which is the
maximum number of elements that the list can store without
growing. The capacity is the size of the array the ArrayList is
currently using to store the elements of the list. If the capacity of
that array becomes insufficient, then a new array is created with
greater capacity for the ArrayList and the values from the old
list are copied to it. The operation is very similar to the method
doubleCapacity() from the notes of Day 15.

COP 3330: Arrays & Strings in Java Page 57 © Mark Llewellyn

ArrayList Class (cont.)
• In addition to its accessor and mutator methods the
ArrayList class provides the ability to add
(append) an element to the end of the list.

– The append operation is guaranteed to be O(1) on
average.

• The class also provides a number of other methods
for inserting and deleting elements to the list.

– Most of these other methods require O(n) time (n is the
number of elements in the list) to perform their tasks.

COP 3330: Arrays & Strings in Java Page 58 © Mark Llewellyn

Selected ArrayList Constructors and Methods

public void add(int i, Object v)

• Inserts value v into the list such that v has index i. Any preexisting elements
with indices i or greater are shifted backwards by one element (to a higher
index value).

public boolean add(Object v)

• Appends the list with a new element with value v and returns true.

public void clear()

• Removes all elements from the list.
public Object clone()

• Returns a shallow copy of this list.
public Object get(int i)

• If i is a valid index, it returns the ith element; otherwise an exception is
generated.

COP 3330: Arrays & Strings in Java Page 59 © Mark Llewellyn

Selected ArrayList Constructors and Methods

public boolean isEmpty()

• Returns true if there are no more elements; otherwise, it returns false.

public Object remove(int i)

• If i is a valid index, it removes the ith element from the list by shifting forward
(to a smaller index) elements i+1 and on. In addition, the removed value is
returned. Otherwise, an exception is generated.

public Object set(int i, Object v)

• If i is a valid index, then the ith element is set to v and the previous value of
the element is returned. Otherwise, an exception is thrown.

public int size()

• Returns the number of elements in the list.

COP 3330: Arrays & Strings in Java Page 60 © Mark Llewellyn

Examples Using the ArrayList Class

ArrayList c = new ArrayList();

ArrayList d = new ArrayList();

c.add(“Colnago”);

c.add(“Eddy Merckx”);

c ArrayList

Colnago Eddy Merckx

